Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Brahim El Bali,^a Aziz Alaoui Tahiri,^b Mohammed Lachkar,^b Marcaida Isabel Arriortua^c and Miren Karmele Urtiaga^c*

^aLaboratory of Mineral Solid Chemistry, Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 624, 60000 Oujda, Morocco, ^bLaboratoire Ingénierie des Matériaux Organométalliques et Moléculaires, Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas, 30000 Fès, Morocco, and ^cMineralogia eta Petrologia Saila, Zientzi eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, PO Box 644, 48080 Bilbao, Spain

Correspondence e-mail: nppurgrm@lg.ehu.es

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Mg–O) = 0.002 Å Disorder in main residue R factor = 0.033 wR factor = 0.089 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Potassium magnesium hydrogendiphosphate dihydrate

The title compound, $\text{KMg}(\text{HP}_2\text{O}_7)\cdot 2\text{H}_2\text{O}$, is isotypic with other members of the series $KM(\text{HP}_2\text{O}_7)\cdot 2\text{H}_2\text{O}$, where M = Mn, Co and Zn. The structure consists of a three-dimensional framework of $[\text{Mg}\text{HP}_2\text{O}_7]^-$ layers parallel to (100) linked by K^+ cations and hydrogen-bonding interactions. The metal ions and water O atoms lie on mirror planes, as does the bridging O atom of the eclipsed $(\text{HP}_2\text{O}_7)^{3-}$ anion. The acid H atom of the diphosphate anion is split into two half-occupied positions around a center of inversion.

Received 27 September 2005 Accepted 8 November 2005 Online 19 November 2005

Comment

Acidic diphosphates are an important class of phosphates with many applications (Assaaoudi *et al.*, 2002; Essehli *et al.*, 2005, and references therein). The present paper deals with the synthesis and crystal structure of the Mg member of the series $KM(HP_2O_7)\cdot 2H_2O$, where *M* is a 3*d* divalent transition metal or Mg. $KMg(HP_2O_7)\cdot 2H_2O$ is isotypic with the known

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2005). E61, i275-i277

View of the asymmetric unit of KMg(HP₂O₇)·2H₂O, with displacement ellipsoids drawn at the 50% probability level. H atoms are given with arbitrary radius.

members of this series, where M = Mn, Zn (Assaaoudi *et al.*, 2002), and Co (Harcharras, Goubitz et al., 2003).

The three-dimensional framework structure of KMg(HP₂O₇)·2H₂O consists of acidic diphosphate metallate layers $[MgHP_2O_7]^-$ parallel to (100), linked by K⁺ cations and hydrogen bonds (Fig. 1 and Table 2).

Mg²⁺ is octahedrally coordinated by six O atoms from three different (HP₂O₇)³⁻ anions and two water molecules, the latter denoted as OW (Table 1). [MgO₆] octahedra are isolated from each other in the structure. Two neighbouring $[MgO_6]$ octahedra are connected via O-P-O bridges from (HP₂O₇) groups. The average Mg-O distance of 2.09 (4) Å is comparable with the values observed for similar coordination polyhedra in other phosphates, as in $K_2Mg(H_2P_2O_7)_2 \cdot 2H_2O_7$ where Mg-O = 2.071 Å (Harcharras, Capitelli *et al.*, 2003).

The bridging O atom (O1) of the hydrogendiphosphate anion is located on a mirror plane; thus, the asymmetric unit (Fig. 2) contains one unique P^{V} atom coordinated by four O atoms in a slightly distorted tetrahedral manner. The resulting $(HP_2O_7)^{3-}$ anion exhibits an eclipsed conformation, with a P-O1-P bridging angle of $129.80 (10)^{\circ}$. The bridging and average terminal P-O distances [1.6153 (8) and 1.52 (2) Å, respectively; Table 1] are of the usual magnitudes as reported for HP₂O₇ groups in the other isostypic hydrogen diphosphates: $P-O_{ter} = 1.516 \text{ Å}$ in both $KMn(HP_2O_7) \cdot 2H_2O$ and $KZn(HP_2O_7) \cdot 2H_2O$ (Assaaoudi *et al.*, 2002), and $P-O_{brid} =$ 1.613 and 1.616 Å $KMn(HP_2O_7) \cdot 2H_2O$ in and $KZn(HP_2O_7) \cdot 2H_2O$, respectively.

The average K–O distance of 3.0 (2) Å is in good agreement with K-O distances in the isotypic compounds $KMn(HP_2O_7)\cdot 2H_2O$ (2.965 Å) and $KZn(HP_2O_7)\cdot 2H_2O$ (2.951 Å).

Experimental

Crystals of the title compound were obtained by mixing equimolar quantities of K₄P₂O₇ and MgCl₂·6H₂O in concentrated HCl (a few ml). The diphosphate was obtained by heating K₂HPO₄ at 873 K for 6 h. The solution was left at room temperature. After a week, well shaped large colourless crystals were deposited, which were washed with a solution of ethanol-water (80:20) and dried.

Crystal data

KMg(HP₂O₇)(H₂O)₂ Mo $K\alpha$ radiation $M_r = 274.39$ Cell parameters from 3218 Orthorhombic, Pnma reflections a = 15.5203 (13) Å $\theta = 3.1 - 31.8^{\circ}$ b = 7.7786 (6) Å $\mu = 1.19~\mathrm{mm}^{-1}$ c = 6.4822 (5) Å T = 293 (2) K V = 782.57 (11) Å³ Prism, colourless $0.14 \times 0.12 \times 0.10 \text{ mm}$ Z = 4 $D_{\rm r} = 2.329 {\rm Mg m}^{-3}$

1353 independent reflections

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 31.9^{\circ}$

 $h = -18 \rightarrow 22$

 $k = -11 \rightarrow 11$

 $l = -9 \rightarrow 9$

1173 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction XCALIBUR-2 CCD diffractometer ω scans Absorption correction: numerical (CrvsAlis RED:

Oxford Diffraction, 2004) $T_{\min} = 0.754, \ T_{\max} = 0.825$ 6826 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.033$	independent and constrained
$wR(F^2) = 0.089$	refinement
S = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0498P)^2]$
1353 reflections	where $P = (F_0^2 + 2F_c^2)/3$
77 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

P1-O4	1.4986 (11)	$K1 - O5W^{iv}$	3.0074 (19)
P1-O3	1.5010 (11)	$K1 - O3^{v}$	3.3490 (12)
P1-O2	1.5450 (11)	$Mg1-O4^{v}$	2.0447 (12)
P1-O1	1.6153 (8)	Mg1-O3 ^{vi}	2.0920 (12)
$K1 - O2^i$	2.8225 (12)	$Mg1 - O5W^{iii}$	2.1010 (19)
$K1 - O3^{ii}$	2.8356 (12)	$Mg1 - O6W^{vi}$	2.1566 (18)
$K1 - O6W^{iii}$	2.8652 (19)		
O4-P1-O3	115.61 (7)	O4-P1-O1	108.57 (7)
O4-P1-O2	110.32 (7)	O3-P1-O1	104.26 (7)
O3-P1-O2	111.76 (7)	O2-P1-O1	105.62 (8)

Symmetry codes: (i) x, y, z - 1; (ii) $-x + 2, y + \frac{1}{2}, -z$; (iii) $-x + \frac{3}{2}, -y, z - \frac{1}{2}$; (iv) -x + 2, -y, -z + 1; (v) $x, -y + \frac{1}{2}, z;$ (vi) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$.

Table 2		
Hydrogen-bond	geometry	(Å,

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O6W-H6W\cdots O4\\ O5W-H5W\cdots O2^{vii}\\ O2-H2\cdots O2^{iv} \end{array}$	0.96 (2)	1.76 (2)	2.6864 (13)	161 (2)
	0.99 (2)	1.85 (2)	2.8231 (13)	166 (2)
	0.91 (2)	1.57 (2)	2.455 (2)	161 (4)

°).

Symmetry codes: (iv) -x + 2, -y, -z + 1; (vii) $x, -y - \frac{1}{2}, z$.

H atoms were located in difference Fourier maps and refined with a common isotropic displacement parameter. The acid H atom (H2) of the diphosphate anion was split into two half-occupied positions around a center of inversion.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2004); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2004); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was financially supported by the Ministerio de Educación *y* Ciencia (No. MAT2004–02071) and Universidad del País Vasco (No. 9/UPV 00130.310–15967/2004).

References

- Assaaoudi, H., Ennaciri, A., Harcharras, M., El Bali, B., Reinauer, F., Glaum, R., Rulmont, A. & Spirlet, M.-R. (2002). *Acta Cryst.* C58, i79–i81.
- Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005). Acta Cryst. E61, i32-i34.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harcharras, M., Capitelli, F., Ennaciri, A.,Brouzi, K., Moliterni, A. G. G., Mattei, G. & Bertolasi, V. (2003). J. Solid State Chem. 176, 27–32.
- Harcharras, M., Goubitz, K., Ennaciri, A., Assaaoudi, H. & Schenk, H. (2003). Acta Cryst. C59, i57-i58.
- Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Versions 1.171.24-beta. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.