Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Brahim El Bali, ${ }^{\text {a }}$ Aziz Alaoui Tahiri, ${ }^{\text {b }}$ Mohammed Lachkar, ${ }^{\text {b }}$ Marcaida Isabel Arriortua ${ }^{c}$ and Miren Karmele Urtiaga ${ }^{\text {c* }}$

${ }^{\text {a }}$ Laboratory of Mineral Solid Chemistry, Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 624, 60000 Oujda, Morocco, ${ }^{\mathbf{b}}$ Laboratoire Ingénierie des Matériaux Organométalliques et Moléculaires, Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas, 30000 Fès, Morocco, and ${ }^{\mathrm{c}}$ Mineralogia eta Petrologia Saila, Zientzi eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, PO Box 644, 48080 Bilbao, Spain

Correspondence e-mail: nppurgrm@lg.ehu.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mg}-\mathrm{O})=0.002 \AA$
Disorder in main residue
R factor $=0.033$
$w R$ factor $=0.089$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Potassium magnesium hydrogendiphosphate dihydrate

The title compound, $\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is isotypic with other members of the series $\mathrm{K} M\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where $M=$ Mn, Co and Zn . The structure consists of a three-dimensional framework of $\left[\mathrm{MgHP}_{2} \mathrm{O}_{7}\right]^{-}$layers parallel to (100) linked by K^{+}cations and hydrogen-bonding interactions. The metal ions and water O atoms lie on mirror planes, as does the bridging O atom of the eclipsed $\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)^{3-}$ anion. The acid H atom of the diphosphate anion is split into two half-occupied positions around a center of inversion.

Comment

Acidic diphosphates are an important class of phosphates with many applications (Assaaoudi et al., 2002; Essehli et al., 2005, and references therein). The present paper deals with the synthesis and crystal structure of the Mg member of the series $\mathrm{K} M\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where M is a $3 d$ divalent transition metal or Mg . $\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is isotypic with the known

Figure 1
Projection of the $\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structure along the c axis.

Received 27 September 2005 Accepted 8 November 2005 Online 19 November 2005

Figure 2
View of the asymmetric unit of $\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, with displacement ellipsoids drawn at the 50% probability level. H atoms are given with arbitrary radius.
members of this series, where $M=\mathrm{Mn}, \mathrm{Zn}$ (Assaaoudi et al., 2002), and Co (Harcharras, Goubitz et al., 2003).

The three-dimensional framework structure of $\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ consists of acidic diphosphate metallate layers $\left[\mathrm{MgHP}_{2} \mathrm{O}_{7}\right]^{-}$parallel to (100), linked by K^{+}cations and hydrogen bonds (Fig. 1 and Table 2).
Mg^{2+} is octahedrally coordinated by six O atoms from three different $\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)^{3-}$ anions and two water molecules, the latter denoted as OW (Table 1). $\left[\mathrm{MgO}_{6}\right]$ octahedra are isolated from each other in the structure. Two neighbouring $\left[\mathrm{MgO}_{6}\right.$] octahedra are connected via $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bridges from $\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)$ groups. The average $\mathrm{Mg}-\mathrm{O}$ distance of 2.09 (4) \AA is comparable with the values observed for similar coordination polyhedra in other phosphates, as in $\mathrm{K}_{2} \mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{Mg}-\mathrm{O}=2.071 \AA$ (Harcharras, Capitelli et al., 2003).

The bridging O atom (O 1) of the hydrogendiphosphate anion is located on a mirror plane; thus, the asymmetric unit (Fig. 2) contains one unique P^{V} atom coordinated by four O atoms in a slightly distorted tetrahedral manner. The resulting $\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)^{3-}$ anion exhibits an eclipsed conformation, with a $\mathrm{P}-\mathrm{O} 1-\mathrm{P}$ bridging angle of $129.80(10)^{\circ}$. The bridging and average terminal $\mathrm{P}-\mathrm{O}$ distances $[1.6153$ (8) and 1.52 (2) \AA, respectively; Table 1] are of the usual magnitudes as reported for $\mathrm{HP}_{2} \mathrm{O}_{7}$ groups in the other isostypic hydrogen diphosphates: $\mathrm{P}-\mathrm{O}_{\text {ter }}=1.516 \AA$ in both $\mathrm{KMn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{KZn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Assaaoudi et al., 2002), and $\mathrm{P}-\mathrm{O}_{\text {brid }}=$ 1.613 and $1.616 \AA$ in $\mathrm{KMn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{KZn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, respectively.

The average $\mathrm{K}-\mathrm{O}$ distance of 3.0 (2) \AA is in good agreement with $\mathrm{K}-\mathrm{O}$ distances in the isotypic compounds $\mathrm{KMn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(2.965 \AA)$ and $\mathrm{KZn}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2.951 \AA).

Experimental

Crystals of the title compound were obtained by mixing equimolar quantities of $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in concentrated HCl (a few $\mathrm{ml})$. The diphosphate was obtained by heating $\mathrm{K}_{2} \mathrm{HPO}_{4}$ at 873 K for 6 h . The solution was left at room temperature. After a week, well shaped large colourless crystals were deposited, which were washed with a solution of ethanol-water (80:20) and dried.

Crystal data

$\mathrm{KMg}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
$M_{r}=274.39$
Orthorhombic, Pnma
$a=15.5203$ (13) \AA
$b=7.7786$ (6) A
$c=6.4822$ (5) \AA
$V=782.57(11) \AA^{3}$
$Z=4$
$D_{x}=2.329 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Diffraction XCALIBUR-2
CCD diffractometer
ω scans
Absorption correction: numerical
(CrysAlis RED;
Oxford Diffraction, 2004)
$T_{\text {min }}=0.754, T_{\text {max }}=0.825$
6826 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.089$
$S=1.05$
1353 reflections
77 parameters

Mo $K \alpha$ radiation

Cell parameters from 3218 reflections $\theta=3.1-31.8^{\circ}$
$\mu=1.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.14 \times 0.12 \times 0.10 \mathrm{~mm}$

1353 independent reflections
1173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=31.9^{\circ}$
$h=-18 \rightarrow 22$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 9$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0498 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

P1-O4	1.4986 (11)	K1-O5 $W^{\text {iv }}$	3.0074 (19)
P1-O3	1.5010 (11)	$\mathrm{K} 1-\mathrm{O}^{\text {v }}$	3.3490 (12)
P1-O2	1.5450 (11)	$\mathrm{Mg} 1-\mathrm{O}^{\text {v }}$	2.0447 (12)
P1-O1	1.6153 (8)	$\mathrm{Mg} 1-\mathrm{O}^{\text {vi }}$	2.0920 (12)
$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.8225 (12)	$\mathrm{Mg} 1-\mathrm{O} 5 W^{\text {iii }}$	2.1010 (19)
$\mathrm{K} 1-\mathrm{O} 3^{\text {ii }}$	2.8356 (12)	$\mathrm{Mg} 1-\mathrm{O} 6 \mathrm{~W}^{\text {vi }}$	2.1566 (18)
K1-O6 $W^{\text {jii }}$	2.8652 (19)		
O4-P1-O3	115.61 (7)	O4-P1-O1	108.57 (7)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 2$	110.32 (7)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	104.26 (7)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	111.76 (7)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	105.62 (8)

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+2, y+\frac{1}{2},-z$; (iii) $-x+\frac{3}{2},-y, z-\frac{1}{2}$; (iv)
$-x+2,-y,-z+1$; (v) $x,-y+\frac{1}{2}, z$; (vi) $-x+\frac{3}{2},-y, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6 W-\mathrm{H} 6 W \cdots \mathrm{O} 4$	$0.96(2)$	$1.76(2)$	$2.6864(13)$	$161(2)$
O5 $^{\text {(2ii }} W-\mathrm{H} 5 W \cdots \mathrm{O} 2^{\text {vii }}$	$0.99(2)$	$1.85(2)$	$2.8231(13)$	$166(2)$
${\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}}^{2}$	$0.91(2)$	$1.57(2)$	$2.455(2)$	$161(4)$

Symmetry codes: (iv) $-x+2,-y,-z+1$; (vii) $x,-y-\frac{1}{2}, z$.

H atoms were located in difference Fourier maps and refined with a common isotropic displacement parameter. The acid H atom (H2)

inorganic papers

of the diphosphate anion was split into two half-occupied positions around a center of inversion.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was financially supported by the Ministerio de Educación y Ciencia (No. MAT2004-02071) and Universidad del País Vasco (No. 9/UPV 00130.310-15967/2004).

References

Assaaoudi, H., Ennaciri, A., Harcharras, M., El Bali, B., Reinauer, F., Glaum, R., Rulmont, A. \& Spirlet, M.-R. (2002). Acta Cryst. C58, i79-i81.

Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. \& El Bali, B. (2005). Acto Cryst. E61, i32-i34.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harcharras, M., Capitelli, F., Ennaciri, A.,Brouzi, K., Moliterni, A. G. G., Mattei, G. \& Bertolasi, V. (2003). J. Solid State Chem. 176, 27-32
Harcharras, M., Goubitz, K., Ennaciri, A., Assaaoudi, H. \& Schenk, H. (2003). Acta Cryst. C59, i57-i58.
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Versions 1.171.24-beta. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

